Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 31(21): 5423-5439, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36073087

RESUMO

In the last 30 years a plethora of phylogeography studies have been published targeting Brazilian marine species. To date, several historical and extant physical and ecological processes have been identified as drivers of allopatric, sympatric and parapatric population genetic differentiation detected along the Brazilian coast. Examples of extant physical barriers include the split of the South Equatorial Current into the Brazil and North Brazil boundary currents, the mouth of major rivers (e.g., Amazon, São Francisco and Doce rivers) and coastal upwellings. Examples of historical barriers include the Vitória-Trindade seamount chain promoting genetic differentiation during periods of glacial maxima and lower sea levels. Examples of ecological speciation include adaptations to different substrata, resource use and reproductive biology. We used published data to build data sets and generalized additive models to identify patterns of spatial phylogeographical concordance across multiple taxa and markers. Our results identify Cape São Roque as the most dominant extant barrier to gene flow along the Brazilian coast, followed by the Vitória-Trindade seamount chain and Cape Santa Marta. Cape Santa Marta is the northern winter limit of the Rio da Plata plume and is intermittently influenced by the Malvinas Current. This study provides a novel explicit quantitative approach to comparative phylogeography that recognizes four Brazilian phylogeographical regions delimited by processes associated with barriers to gene flow.


Assuntos
Fluxo Gênico , Variação Genética , Filogeografia , Brasil , Filogenia , DNA Mitocondrial/genética
2.
J Phycol ; 55(3): 611-624, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30805921

RESUMO

Lobophora is a common tropical to temperate genus of brown algae found in a plethora of habitats including shallow and deep-water coral reefs, rocky shores, mangroves, seagrass beds, and rhodoliths beds. Recent molecular studies have revealed that Lobophora species diversity has been severely underestimated. Current estimates of the species numbers range from 100 to 140 species with a suggested center of diversity in the Central Indo-Pacific. This study used three molecular markers (cox3, rbcL, psbA), different single-marker species delimitation methods (GMYC, ABGD, PTP), and morphological evidence to evaluate Lobophora species diversity in the Western Atlantic and the Eastern Pacific oceans. Cox3 provided the greatest number of primary species hypotheses(PSH), followed by rbcL and then psbA. GMYC species delimitation analysis was the most conservative across all three markers, followed by PTP, and then ABGD. The most informative diagnostic morphological characters were thallus thickness and number of cell layers in both the medulla and the dorsal/ventral cortices. Following a consensus approach, 14 distinct Lobophora species were identified in the Western Atlantic and five in the Eastern Pacific. Eight new species from these two oceans were herein described: L. adpressa sp. nov., L. cocoensis sp. nov., L. colombiana sp. nov., L. crispata sp. nov., L. delicata sp. nov., L. dispersa sp. nov., L. panamensis sp. nov., and L. tortugensis sp. nov. This study showed that the best approach to confidently identify Lobophora species is to analyze DNA sequences (preferably cox3 and rbcL) followed by comparative morphological and geographical assessment.


Assuntos
Phaeophyceae , Recifes de Corais , Geografia , Oceano Pacífico , Filogenia
3.
J Phycol ; 48(5): 1119-29, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27011273

RESUMO

Sargassum subgenus Phyllotricha currently includes seven species restricted to Australian and New Zealand coasts. A recent study of Cystoseira and other Sargassaceae genera based on mitochondrial 23S DNA and chloroplast-encoded psbA sequences resulted in the most widely distributed species of subgenus Phyllotricha, Sargassum decurrens, being transferred to the reinstated monospecific Sargassopsis Trevisan. The fate of the residual six Phyllotricha species, however, was not considered. The present study examines these Phyllotricha species, alongside other Sargassum subgenera, Sargassopsis, Sirophysalis trinodis (formerly Cystoseira trinodis) and the New Zealand endemic Carpophyllum Greville, using morphological evidence and the molecular phylogenetic markers cox3, ITS-2 and the rbcL-S spacer. Our results suggest both the genus Sargassum and Sargassum subgenus Phyllotricha are polyphyletic as currently circumscribed. Four S. subgen. Phyllotricha species, i.e. S. sonderi, S. decipiens, S. varians and S. verruculosum, form a monophyletic group sister to the genus Carpophyllum, and S. peronii is genetically identical to S. decurrens with regard to all three loci. We propose the resurrection of the genus Phyllotricha Areschoug, with type species Phyllotricha sonderi, and include the new combinations Phyllotricha decipiens, Phyllotricha varians and Phyllotricha verruculosum. Sargassum peronii, S. heteromorphum and S. kendrickii are transferred to Sargassopsis and Sargassum peronii is considered a synonym of Sargassopsis decurrens.

4.
J Phycol ; 48(5): 1278-83, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27011285

RESUMO

Gracilaria vermiculophylla (Ohmi) Papenfuss is an invasive alga that is native to Southeast Asia and has invaded many estuaries in North America and Europe. It is difficult to differentiate G. vermiculophylla from native forms using morphology and therefore molecular techniques are needed. In this study, we used three molecular markers (rbcL, cox2-cox3 spacer, cox1) to identify G. vermiculophylla at several locations in the western Atlantic. RbcL and cox2-cox3 spacer markers confirmed the presence of G. vermiculophylla on the east coast of the USA from Massachusetts to South Carolina. We used a 507 base pair region of cox1 mtDNA to (i) verify the widespread distribution of G. vermiculophylla in the Virginia (VA) coastal bays and (ii) determine the intraspecific diversity of these algae. Cox1 haplotype richness in the VA coastal bays was much higher than that previously found in other invaded locations, as well as some native locations. This difference is likely attributed to the more intensive sampling design used in this study, which was able to detect richness created by multiple, diverse introductions. On the basis of our results, we recommend that future studies take differences in sampling design into account when comparing haplotype richness and diversity between native and non-native studies in the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...